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Lecture 3 Highlights 
Phys 402 

 
 
 Whenever we change the Hamiltonian operator (for example by considering new 
physical effects in the Hydrogen atom), we have to go back and re-solve the TISE and 
TDSE from scratch, and find the new eigenvalues and eigenfunctions. This can be very 
tedious and time-consuming.  It would be nice to find a shortcut that relies on the exact 
solutions to the ‘un-perturbed’ Hydrogen atom, and determines the new eigenvalues and 
eigenfunctions as minor corrections to the original versions.  This will work as long as the 
new terms in the Hamiltonian are sufficiently “small.”  This handy shortcut method is 
called perturbation theory. 
 
Perturbation Theory 

The point of perturbation theory is to form an approximate solution for the 
eigenvalues and eigenfunctions of a complicated problem that is closely related to an 
exactly solved problem.  In perturbation theory we start with an ‘unperturbed’ Hamiltonian 

0Η  for which we can find the exact eigenvalues 0
nE and eigenfunctions 0

nψ : 
 0000

nnn E ψψ =Η        (1) 
 We are interested in solving another problem with a very similar Hamiltonian

'0 Η+Η=Η λ , where 'Η is called the perturbing Hamiltonian, and 1<<λ  is a small 
parameter to remind us that the perturbation should be “small.”  (Later we will take 1=λ
and replace it with a “smallness” condition on the perturbing Hamiltonian 'H .)  The exact 
solution to this problem involves new eigenvalues and eigenfunctions: 
  nnn E ψψ =Η         (2) 
 We want to solve this Schrodinger equation for the new eigenvalues 𝐸𝐸𝑛𝑛 and 
eigenfunctions 𝜓𝜓𝑛𝑛.  The purpose of perturbation theory is to find approximate expressions 
for the new eigenvalues nE and eigenfunctions nψ  in terms of the eigenvalues and 
eigenfunctions of the unperturbed problem, and the perturbing Hamiltonian.  To 
(approximately) solve this new problem we do a perturbation series expansion in powers 
of the small parameterλ : 
  ...2210 +++= nnnn ψλλψψψ       (3) 
  ...2210 +++= nnnn EEEE λλ       (4) 
The terms on the RHS represent zeroth-order, first-order, and second-order corrections to 
the eigenfunctions and eigenvalues.  Note that the superscripts on theψ ’s and E ’s are NOT 
powers, but labels that keep track of the order of the correction.  Remember also that n
represents a list of quantum numbers, in general.  The expectation is that the new 
eigenvalues and eigenfunctions will be close to those of the unperturbed problem.   

For now we will be considering systems with non-degenerate spectra, meaning that 
each eigenstate of the system has a unique eigen-energy.  In addition we will consider time-
independent problems for now.  Both of these restrictions will be lifted later. 
 Substituting (3) and (4) into (2) and gathering like powers of the bookkeeping 
parameter λ  yields:  
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  00000 : nnn E ψψλ =Η  
  01100101 ': nnnnnn EE ψψψψλ +=Η+Η      (5) 
  0211201202 ': nnnnnnnn EEE ψψψψψλ ++=Η+Η     (6) 
The zeroth-order equation reproduces Eq. (1) for the unperturbed problem.  The first-order 
equation can be solved using the fact that 1

nψ can be expressed as a linear combination of 
all the eigenfunctions of 0Η (a postulate of QM) as, 
  ∑=



01 ψψ nln a ,       (7) 

where the na are unknown at this point.  Putting (7) into (5) and exploiting orthonormality 
(sum-busting!) of the unperturbed eigenfunctions 0

nψ yields two equations: 

  rdE nnn
30*01 'ψψ∫ Η=        (8) 
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These are the first-order corrections to the nth eigenvalue and eigenfunction, respectively.  
After we evaluate them, these expressions will go back into Eqs. (3) and (4) to get a first-
order approximation to the perturbed Schrodinger equation.  Note that the sum in Eq. (9) 
excludes the case n= , and assumes that the energy levels of the un-perturbed 
Hamiltonian are non-degenerate (i.e. 𝐸𝐸𝑛𝑛0 ≠ 𝐸𝐸𝑙𝑙0 for all 𝑙𝑙).  We expect that 01

nn EE << and 
0030*0 '  EErd nn −<<Η∫ ψψ  for the perturbation expansion to be valid (this is the 

“smallness” condition on the perturbing Hamiltonian).  The first order change in energy is 
the expectation value of the perturbing Hamiltonian in the un-perturbed basis.  As seen 
from Eq. (9), the perturbation has the effect of mixing together all of the eigenfunctions of 
the unperturbed case, in general.  From the denominator of Eq. (9) one sees that states that 
are nearby in energy tend to be mixed in the most.  We expect the infinite series in Eq. (9) 
to converge quickly because i) the numerator will likely get small as   increases (due to 
the integration of a rapidly “wiggling” function *0

ψ  multiplying two – in general - 
relatively slowly-varying functions 'Η and 0

nψ ), and ii) the denominator will grow in 
magnitude as  increases beyond n . 
 Now an example is in order.  Consider a particle of mass m in the infinite square 
well of width a  with a small rectangular bump in the bottom of the potential well.  How 
does this bump change the ground state energy and ground state eigenfunction?  It is not 
possible to solve the Schrödinger equation for this problem exactly.  However we can 
achieve an approximate solution through perturbation theory.  We write the unperturbed 
case as follows. 



3 
 

    
 

 )(
2 2

22
0 xV

dx
d

m
+−=Η

  where 




><∞
<<

=
a x0,for 

ax0for  0
)(

x
xV  

The unperturbed eigenvalues and eigenfunctions are: 
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Here n is a positive integer. 
 The perturbing Hamiltonian is this: 
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whereδ could be a positive or negative energy.  In this case the perturbation is made to the 
potential function 𝑉𝑉(𝑥𝑥).  This represents a small “brick” placed in the bottom of the infinite 
square well.  Note that we expect δ to be “small” in the sense that it should not change 
completely the character of the problem, such as creating two smaller finite-square wells 
with many levels in each sub-well.  We will state the “smallness” criterion onδ  below. 
 Examine the effects of this perturbation on just the ground state ( n =1) of the 
system.  The un-perturbed ground state is characterized by: 
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The first order correction to the ground state energy is: 
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δ is positive (upward bump on the bottom of the well), the energy of the ground state shifts 
up.  A small well on the bottom ( 0<δ ) will decrease the energy.  The new ground state 
energy to first order is given by: 
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 The first order correction to the ground state wavefunction is: 
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The first term in the sum is 2= , but the integral in that case is zero (check it!).  The first 
non-zero term is 3= , and this yields for the coefficient 13a : 
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The integral can be done by standard methods and yields: 
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The new ground state wavefunction now is to (part of) first order: 
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If we assume 0>δ , note that the correction decreases the wavefunction amplitude in the 
middle of the well (near x = a/2) and increases it in the “wings”, away from the bump, as 
we might expect.  The unperturbed ground state wavefunction (red) and corrected ground 
state wavefunction (blue) are sketched in the figure below.  The perturbing potential is also 
shown in green. 
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Note that the next term in the series expansion for 1ψ  will be proportional to 







a
xπ5sin  due 

to the symmetry of the problem. 
 

 
 


